Pages

Sistem ekskresi pada manusia dan vertebrata

Sistem ekskresi pada manusia dan vertebrata lainnya melibatkan organ paru-paru, kulit, ginjal, dan hati. Namun yang terpenting dari keempat organ tersebut adalah ginjal.

1. Ginjal

Fungsi utama ginjal adalah mengekskresikan zat-zat sisa metabolisme yang mengandung nitrogen misalnya amonia. Amonia adalah hasil pemecahan protein dan bermacam-macam garam, melalui proses deaminasi atau proses pembusukan mikroba dalam usus. Selain itu, ginjal juga berfungsi mengeksresikan zat yang jumlahnya berlebihan, misalnya vitamin yang larut dalam air; mempertahankan cairan ekstraselular dengan jalan mengeluarkan air bila berlebihan; serta mempertahankan keseimbangan asam dan basa. Sekresi dari ginjal berupa urin.


a. Struktur Ginjal

Bentuk ginjal seperti kacang merah, jumlahnya sepasang dan terletak di dorsal kiri dan kanan tulang belakang di daerah pinggang. Berat ginjal diperkirakan 0,5% dari berat badan, dan panjangnya ± 10 cm. Setiap menit 20-25% darah dipompa oleh jantung yang mengalir menuju ginjal.

Ginjal terdiri dari tiga bagian utama yaitu:

a. korteks (bagian luar)
b. medulla (sumsum ginjal)
c. pelvis renalis (rongga ginjal).

Bagian korteks ginjal mengandung banyak sekali nefron ± 100 juta sehingga permukaan kapiler ginjal menjadi luas, akibatnya perembesan zat buangan menjadi banyak. Setiap nefron terdiri atas badan Malphigi dan tubulus (saluran) yang panjang. Pada badan Malphigi terdapat kapsul Bowman yang bentuknya seperti mangkuk atau piala yang berupa selaput sel pipih. Kapsul Bowman membungkus glomerulus. Glomerulus berbentuk jalinan kapiler arterial. Tubulus pada badan Malphigi adalah tubulus proksimal yang bergulung dekat kapsul Bowman yang pada dinding sel terdapat banyak sekali mitokondria. Tubulus yang kedua adalah tubulus distal.



Pada rongga ginjal bermuara pembuluh pengumpul. Rongga ginjal dihubungkan oleh ureter (berupa saluran) ke kandung kencing (vesika urinaria) yang berfungsi sebagai tempat penampungan sementara urin sebelum keluar tubuh. Dari kandung kencing menuju luar tubuh urin melewati saluran yang disebut uretra.

b. Proses-proses di dalam Ginjal

Di dalam ginjal terjadi rangkaian prows filtrasi, reabsorbsi, dan augmentasi.

1. Penyaringan (filtrasi)

Filtrasi terjadi pada kapiler glomerulus pada kapsul Bowman. Pada glomerulus terdapat sel-sel endotelium kapiler yang berpori (podosit) sehingga mempermudah proses penyaringan. Beberapa faktor yang mempermudah proses penyaringan adalah tekanan hidrolik dan permeabilitias yang tinggi pada glomerulus. Selain penyaringan, di glomelurus terjadi pula pengikatan kembali sel-sel darah, keping darah, dan sebagian besar protein plasma. Bahan-bahan kecil terlarut dalam plasma, seperti glukosa, asam amino, natrium, kalium, klorida, bikarbonat, garam lain, dan urea melewati saringan dan menjadi bagian dari endapan.

Hasil penyaringan di glomerulus berupa filtrat glomerulus (urin primer) yang komposisinya serupa dengan darah tetapi tidak mengandung protein. Pada filtrat glomerulus masih dapat ditemukan asam amino, glukosa, natrium, kalium, dan garamgaram lainnya.

2. Penyerapan kembali (Reabsorbsi)

Volume urin manusia hanya 1% dari filtrat glomerulus. Oleh karena itu, 99% filtrat glomerulus akan direabsorbsi secara aktif pada tubulus kontortus proksimal dan terjadi penambahan zat-zat sisa serta urea pada tubulus kontortus distal.

Substansi yang masih berguna seperti glukosa dan asam amino dikembalikan ke darah. Sisa sampah kelebihan garam, dan bahan lain pada filtrat dikeluarkan dalam urin. Tiap hari tabung ginjal mereabsorbsi lebih dari 178 liter air, 1200 g garam, dan 150 g glukosa. Sebagian besar dari zat-zat ini direabsorbsi beberapa kali.

Setelah terjadi reabsorbsi maka tubulus akan menghasilkan urin seku Zder yang komposisinya sangat berbeda dengan urin primer. Pada urin sekunder, zat-zat yang masih diperlukan tidak akan ditemukan lagi. Sebaliknya, konsentrasi zat-zat sisa metabolisme yang bersifat racun bertambah, misalnya ureum dari 0,03`, dalam urin primer dapat mencapai 2% dalam urin sekunder.

Meresapnya zat pada tubulus ini melalui dua cara. Gula dan asam mino meresap melalui peristiwa difusi, sedangkan air melalui peristiwa osn osis. Reabsorbsi air terjadi pada tubulus proksimal dan tubulus distal.

3. Augmentasi

Augmentasi adalah proses penambahan zat sisa dan urea yang mulai terjadi di tubulus kontortus distal. Komposisi urin yang dikeluarkan lewat ureter adalah 96% air, 1,5% garam, 2,5% urea, dan sisa substansi lain, misalnya pigmen empedu yang berfungsi memberi warm dan bau pada urin.

Hal-hal yang Mempengaruhi Produksi Urin

Hormon anti diuretik (ADH) yang dihasilkan oleh kelenjar hipofisis posterior akan mempengaruhi penyerapan air pada bagian tubulus distal karma meningkatkan permeabilitias sel terhadap air. Jika hormon ADH rendah maka penyerapan air berkurang sehingga urin menjadi banyak dan encer. Sebaliknya, jika hormon ADH banyak, penyerapan air banyak sehingga urin sedikit dan pekat. Kehilangan kemampuan mensekresi ADH menyebabkan penyakti diabetes insipidus. Penderitanya akan menghasilkan urin yang sangat encer.

Gambar 4:
Mekanisme kerja pengaruh hormon ADH terhadap produksi urin.

Selain ADH, banyak sedikitnya urin dipengaruhi pula oleh faktor-faktor berikut :

a. Jumlah air yang diminum

Akibat banyaknya air yang diminum, akan menurunkan konsentrasi protein yang dapat menyebabkan tekanan koloid protein menurun sehingga tekanan filtrasi kurang efektif. Hasilnya, urin yang diproduksi banyak.

b. Saraf

Rangsangan pada saraf ginjal akan menyebabkan penyempitan duktus aferen sehingga aliran darah ke glomerulus berkurang. Akibatnya, filtrasi kurang efektif karena tekanan darah menurun.

c. Banyak sedikitnya hormon insulin

Apabila hormon insulin kurang (penderita diabetes melitus), kadar gula dalam darah akan dikeluarkan lewat tubulus distal. Kelebihan kadar gula dalam tubulus distal mengganggu proses penyerapan air, sehingga orang akan sering mengeluarkan urin.

2. Paru-paru (Pulmo)

Fungsi utama paru-paru adalah sebagai alat pernapasan. Akan tetapi, karma mengekskresikan zat Sisa metabolisme maka dibahas pula dalam sistem ekskresi. Karbon dioksida dan air hash metabolisme di jaringan diangkut oleh darah lewat vena untuk dibawa ke jantung, dan dari jantung akan dipompakan ke paru-paru untuk berdifusi di alveolus. Selanjutnya, H2O dan CO2 dapat berdifusi atau dapat dieksresikan di alveolus paru-paru karena pada alveolus bermuara banyak kapiler yang mempunyai selaput tipis.

Karbon dioksida dari jaringan sebagian besar (75%) diangkut oleh plasma darah dalam bentuk senyawa HC03, sedangkan sekitar 25% lagi diikat oleh Hb yang membentuk karboksi hemoglobin (HbC02).

3. Hati (Hepar)

Hati disebut juga sebagai alat ekskresi di samping berfungsi sebagai kelenjar dalam sistem pencernaan. Hati menjadi bagian dari sistem ekskresi karma menghasilkan empedu. Hati juga berfungsi merombak hemoglobin menjadi bilirubin dap biliverdin, dap setelah mengalami oksidasi akan berubah jadi urobilin yang memberi warna pada feses menjadi kekuningan. Demikian juga kreatinin hash pemecahan protein, pembuangannya diatur oleh hati kemudian diangkut oleh darah ke ginjal.

Jika saluran empedu tersumbat karena adanya endapan kolesterol maka cairan empedu akan masuk dalam sistem peredaran darah sehingga cairan darah menjadi lebih kuning. Penderitanya disebut mengalami sakit kuning.

4. Kulit (Cutis)

Kulit berfungsi sebagai organ ekskresi karma mengandung kelenjar keringat (glandula sudorifera) yang mengeluarkan 5% sampai 10% dari seluruh sisa metabolisme. Pusat pengatur suhu pada susunan saraf pusat akan mengatur aktifitas kelenjar keringat dalam mengeluarkan keringat.

Keringat mengandung air, larutan garam, dap urea. Pengeluaran keringat yang berlebihan bagi pekerja berat menimbulkan hilang melanositnya garam-garam mineral sehingga dapat menyebabkan kejang otot dan pingsan.

Selain berfungsi mengekskresikan keringat, kulit juga berfungsi sebagai pelindung terhadap kerusakan fisik, penyinaran, serangan kuman, penguapan, sebagai organ penerima rangsang (reseptor), serta pengatur suhu tubuh.

Kulit terdiri atas dua bagian utama yaitu: epidermis dan dermis.

a. Epidermis (lapisan terluar) dibedakan lagi atas:

1. stratum korneum berupa zat tanduk (sel mati) dan selalu mengelupas
2. stratum lusidum
3. stratum granulosum yang mengandung pigmen
4. stratum germinativum ialah lapisan yang selalu membentuk sel-sel kulit ke arah luar.

b. Dermis

Pada bagian ini terdapat akar rambut, kelenjar minyak, pembuluh darah, serabut saraf, serta otot penegak rambut.

Kelenjar keringat akan menyerap air dan garam mineral dari kapiler darah karena letaknya yang berdekatan. Selanjutnya, air dan garam mineral ini akan dikeluarkan di permukaan kulit (pada pori) sebagai keringat. Keringat yang keluar akan menyerap panas tubuh sehingga suhu tubuh akan tetap.

Dalam kondisi normal, keringat yang keluar sekitar 50 cc per jam. Jumlah ini akan berkurang atau bertambah jika ada faktor-faktor berikut suhu lingkungan yang tinggi, gangguan dalam penyerapan air pada ginjal (gagal ginjal), kelembapan udara, aktivitas tubuh yang meningkat sehingga proses metabolisme berlangsung lebih cepat untuk menghasilkan energi, gangguan emosional, dan menyempitnya pembuluh darah akibat rangsangan pada saraf simpatik.

Sistem Ekskresi Pada Hewan Vertebrata

Sistem Ekskresi Pada Hewan Vertebrata


Sistem ekskresi pada manusia dan vertebrata lainnya melibatkan organ paru-paru, kulit, ginjal, dan hati. Namun yang terpenting dari keempat organ tersebut adalah ginjal.
1. Sistem ekskresi pada mamalia

Sistem Ekskresi pada mamalia hampir sama dengan manusia tetapi sedikit berbeda karena mamalia dipengaruhi/disebabkan oleh lingkungan tempat tinggalnya.

Paru-paru mamalia mempunyai permukaan ber spon (spongy texture) dan dipenuhi liang epitelium dengan itu mempunyai luas permukaan per isipadu yang lebih luas berbanding luas permukaan paru-paru. Paru-paru manusia adalah contoh biasa bagi paru-paru jenis ini.

Paru-paru terletak di dalam rongga dada (thoracic cavity), dilindungi oleh struktur bertulang tulang selangka dan diselaputi karung dwi dinding dikenali sebagai pleura. Lapisan karung dalam melekat pada permukaan luar paru-paru dan lapisan karung luar melekat pada dinding rongga dada. Kedua lapisan ini dipisahkan oleh lapisan udara yang dikenali sebagai rongga pleural yang berisi cecair pleural ini membenarkan lapisan luar dan dalam berselisih sesama sendiri, dan menghalang ia daripada terpisah dengan mudah.

Bernafas kebanyakannya dilakukan oleh diafragma di bawah, otot yang mengucup menyebabkan rongga di mana paru-paru berada mengembang. Sangkar selangka juga boleh mengembang dan mengucup sedikit.

bisnis

Ini menyebabkan udara tetarik ke dalam dan keluar dari paru-paru melalui trakea dan salur bronkus (bronkhial tubes) yang bercabang dan mempunyai alveolus di ujung yaitu karung kecil dikelilingi oleh kapilari yang dipenuhi darah. Di sini oksigen meresap masuk ke dalam darah, di mana oksigen akan d angkut melalui hemoglobin.

Darah tanpa oksigen dari jantung memasuki paru-paru melalui pembuluh pulmonari dan lepas dioksigenkan, kembali ke jantung melalui salur pulmonari.

2.Sistem ekskresi pada ikan

Ikan mempunyai system ekskresi berupa ginjal dan suatu lubang pengeluaran yang disebut urogenital.Lubang urogenital ialah lubang tempat bermuaranya saluran ginjal dan saluran kelamin yang berada tepat dibelakang anus.

Ginjal pada ikan yang hidup di air tawar dilengkapi sejumlah glomelurus yang jumlahnya lebih banyak. Sedangkan ikan yang hidup di air laut memiliki sedikit glomelurus sehingga penyaringan sisa hasil metabolisme berjalan lambat.

3.Sistem ekskresi pada amfibi

Saluran ekskresi pada katak yaitu ginjal, paru-paru,dan kulit. Saluran ekskresi pada katak jantan & betina memiliki perbedaan, pada katak jantan saluran kelamin & saluran urin bersatu dengan ginjal, sedangkan pada katak betina kedua saluran itu terpisah. Walaupun begitu alat lainnya bermuara pada satu saluran dan lubang pengeluaran yang disebut kloaka.

4.Sistem ekskresi pada reptil

Sistem ekskresi pada reptil berupa ginjal, paru-paru,kulit dan kloaka. Kloaka merupakan satu-satunya lubang untuk mengeluarkan zat-zat hasil metabolisme.Reptil yang hidup di darat sisa hasil metabolismenya berupa asam urat yang dikeluarkan dalam bentuk bahan setengah padat berwarna putih.

Fotoreseptor

Mata adalah sistem pencitra yang dimiliki oleh manusia. Cahaya yang di pantulkan (atau dipancarkan) oleh sebuah benda ditangkap oleh mata melalui suatu sistem biokamera dengan satu lensa. Di belakang lensa mata akan terjadi bayangan terbalik karena sifat optik dari lensa. Selanjutnya bayangan ini diubah menjadi sinyal-sinyal biolistrik oleh retina untuk disampaikan ke otak. Akhirnya orang mendapatkan kesan melihat benda tersebut setelah otak menangkap dan mengolah sinyal-sinyal tersebut.

Fotoreseptor yang terdapat di retina mats terdiri dari sel batang dan sel kerucut. Sel batang mengandung bahan kimia fotosensitif yang disebut Rhodopsin sedangkan sel kerucut mengandung satu dari beberapa fotopigmen (Photopsin), yang terjrai apabila terkena cahaya. Dalam keadaan gelap rhodopsin di sel batang tidak aktif. Bila ada cahaya maka akan terjadi dekomposisi dari rhodopsin untuk menjadi vitamin A. Pengaktifan rhodopsin akan mengakibatkan fototransduksi yang mencetuskan pembentukan serangkaian zat antara, salah satunya Metarhodopsin II yang merupakan senyawa kunci untuk memulai penutupan saluran Na+. Hal tersebut menyebabkan hiperpotarisasi yang menurunkan kecepatan lepas muatan sel batang ke sel kedua retina, yaitu sel bipolar sehingga inhibisi terhadap sel bipolar lenyap dan sel bipolar mengalami depolarisasi. Depolarisasi sel bipolar menyebabkan munculnya suatu potensial aksi di sel ketiga retina, sel ganglion. Potensial aksi yang dihasilkan sel ganglion dikirim ke otak melalui saraf optikus.

Didalam mata manusia ada dua jenis fotoreseptor, yang dapat dibedakan dari bentuknya, yaitu fotoreseptor berbentuk batang silinder (rods) dan yang berbentuk kerucut (cones). Fotoreseptor batang ukurannya panjang dan tipis, dan jumlahnya sangat banyak hingga mencapai 100 juta buah. Fungsi dari fotoreseptor ini adalah untuk menangkap luminansi citra dan mampu menangkap bayangan meskipun pencahayaannya rendah. Fotoreseptor kerucut bersifat pendek dan tebal. Fotoreseptor ini dimampatkan di suatu daerah pada pusat mata yang disebut fovea (Gb.2.1(b)). Jumlahnya lebih sedikit dibandingkan jensi batang dan bertanggung jawab untuk menangkap warna pada bayangan benda.
Mata manusia dapat melihat karena adanya pantulan cahaya dari benda. Cahaya yang dapat ditangkap oleh mata manusia berada pada daerah optik dengan rentang panjang gelombang 350-780 nm. Intensitas cahaya dinyatakan sebagai sebaran energi I(λ) dan mata manusia sanggup beroperasi pada 10 orde derajat luminansi.
Luminansi atau intensitas adalah suatu ukuran absolut, tidak bergantung pada cahaya disekitarnya. Luminansi pada suatu titik dalam ruang L(x,y) menyatakan sebaran energi pada titik tersebut untuk suatu jangkauan panjang gelombang,
dimana I(x,y,λ) adalah sebaran cahaya spasial dan V(λ) adalah fungsi efisiensi relatif dari sistem visual yang bentuknya ditentukan oleh fungsi transfer dari fotoreseptor. Kecerahan (brightness) berkaitan dengan tingkat luminansi yang diindera. Ini adalah nilai relatif dan harganya bergantung pada luminansi di sekitarnya. Mata manusia lebih sensitif terhadap kontras luminansi daripada nilai absolut luminansi.

Kualitas suatu citra dapat diukur dengan dua cara, yaitu secara subyektif dan secara obyektif. Dalam pengukuran subyektif, pengujian dilakukan oleh manusia dimana suatu tim penilai disajikan gambar yang sama kemudian diminta memberikan skor pada gambar tersebut. Skala kualitas biasanya dalam rentang 1 sampai 5, berkaitan dengan citra yang memiliki kualitas: tidak memuaskan, jelek, rata-rata, baik, dan sangat baik. Secara obyektif, citra diukur dari MSE dan variasi nilai ini. Kelebihan teknik pengukuran ini dibandingkan dengan cara subyektif adalah: sederhana, kurang bergantung opini individu dan mudah ditangani secara matematis. Kekurangannya adalah nilai yang diperoleh tidak selalu mencerminkan apa yg dilihat oleh mata manusia.
Disamping MSE, dua ukuran obyektif yang sering dipakai dalam pengolahan citra adalah SNR dan PSNR. Nilai SNR dan PSNR disukai karena skornya menunjukkan kualitas dari sinyal atau citra, artinya, citra dengan SNR atau PSNR yang tinggi memiliki kualitas yang lebih baik dari pada yang memiliki SNR atau PSNR rendah. Hal ini berlawanan dengan MSE. SNR dan PSNR didefinisikan sebagai berikut:

dalam rumus diatas, 2sσ menyatakan nilai variansi atau energi dari sinyal asal, menyatakan variansi dari sinyal kesalahan dan A adalah nilai puncak-ke-puncak dari sinyal. Nilai ini dinyatakan dalam satuan dB. Nilai PSNR biasanya 12-15 dB lebih tinggi daripada nilai SNR. 2eσ

2 Rerpresentasi Warna
Warna yang dilihat mata bergantung pada kandungan spektral (komposisi panjang gelombang), misalnya cahaya dengan kandungan spektral tinggi pada daerah 700 nm akan menunjukkan warna merah. Jika semua gelombang dalam daerah cahaya tampak memiliki energi seragam, maka akan terlihat warna putih.

Pada tahun 1802, Thomas Young menemukan bahwa sebarang warna dapat dibentuk dengan mencampurkan 3 warna utama secara benar. Ada beberapa cara menyatakan warna dalam citra dijital. Salah satu diantaranya adalah sistem luminansi-krominansi. Luminansi menunjukkan kecerahan, sedangkan krominansi—yang terdiri dari hue dan saturasi, menentukan warna. Hue menentukan “tone” dari warna (kemerahan, kehijauan dst) dan bergantung pada puncak panjang gelombang. Saturasi menggambarkan warna murni dan bergantung pada sebaran (lebar pita) dari spektrum cahaya.

Mata manusia memiliki tiga tipe fotoreseptor kerucut,masing-masing dengan puncak sensitivitas bergantung λ. Spektra serapan Si(λ) dari fotoreseptor ini memiliki puncak disekitar 450 nm (biru), 550 nm (hijau), dan 620 nm (kuning-hijau). Sensasi warna yang digambarkan oleh tanggapan spektralnya.

Sistem warna lain yang juga sering dipakai adalah CIE (Commision Internationale de L’Eclairage/ komite internasional standard warna) yang menyatakan warna dalam spektra primer RGB (Red-Green-Blue). Sumber utama yang dipakai dalam sistem ini adalah cahaya monokromatis dengan panjang gelombang 700 nm (merah), 546 nm (hijau), dan 435 nm (biru). Sinar putih referensi memiliki spektrum datar dengan komposisi R=G=B=1. Sistem CIE diperlihatkan pada Gambar 2.5.
Satu hal yang sangat penting didalam berbagia sistem warna adalah satu sistem dapat diterjemahkan ke sistem warna lain melalui transformasi, misalnya dengan mengalikan vektor warna dengan suatu matriks

Beberapa sistem warna lainnya adalah YUV untuk sistem PAL, HSI (Hue, Saturation, Intensity) dan CMY (Cyan, Magenta, Yellow) untuk sistem percetakan. CMY adalah komplemen dari sistem RGB. Representasi suatu citra berwarna kedalam tiga jenis sistem; RGB, HSV dan YUV.

SISTEM KOORDINASI PADA HEWAN

Eksteroseptor

Eksteroseptor memberi informasi kejadian-kejadian pada permukaan tubuh hewan. Eksteroseptor adalah suatu alat penerima rangsang dari luar, misalnya bila kita digigit nyamuk atau dihinggapi serangga. Kita dapat mengetahui langsung tempat nyamuk itu menggigit dan serangga hinggap. Dengan secara refleks kita akan melakukan respon terhadap bekas gigitan tadi misalnya menggaruk bekasnya.
Indra peraba dan tekanan diketahui sebagai indera dirasakan oleh ujung-ujung saraf pada folikel-folikel rambut yaitu ujung-ujung saraf Merkel’s dan Paccini. Ujung saraf Paccini yang berbentuk ovale adalah reseptor tekanan.
Ujung saraf Merkel, Paccini dan Meisner disebut juga mekanoreseptor karena bisa menyampaikan rangsang yang disebabkan oleh rangsangan mekanis. Ujung-ujung saraf Ruffini berguna sebagai reseptor panas. Dengan ujung saraf ini kita bisa mengetahui perubahan temperatur pada permukaan kulit terutama panas. Reseptor yang demikian disebut juga termoseptor. Reseptor untuk merasakan sakit ini merupakan ujung-ujung saraf yang tersebar di seluruh tubuh.

Proprioseptor

Informasi mengenai kedudukan tubuh dan lender dirasakan oleh propriseptor. Proprioseptor terdapat pada empat otot (otot lurik), pada tendon otot, pada selaput pembungkus otot berupa ujung saraf Paccini dan pada sendi. Proprioseptor merupakan suatu mekanoseptor. Proprioseptor penting untuk mengatur koordinasi aktifitas otot.

Interoseptor
Interoseptor menyampaikan informasi mengenai kejadian-kejadian di dalam tubuh. Di dalam tubuh hewan banyak reseptor yang secara konstan menyampaikan informasi tentang keadaan alat-alat dalam seperti jantung, paru-paru, pembuluh darah dan informasi tentang lingkungan dalam seperti kadar glukosa darah, konsentrasi ion, dan PH kepada saraf pusat. Semua reseptor diatas termasuk kedalam interoreseptor.
Selain interoseptor juga terdapat interoseptor khusus yang berfungsi sebagai alat keseimbangan. Letaknya pada telinga dalam yang disebut Labirin. Labirin terdiri atas alat keseimbangan untuk merasakan gerakan kepala yaitu saluran-saluran semisirkuler dan alat untuk mengetahui kedudukan kepala yaitu utrikulus dan sakulus.

Fotoreseptor
Hampir semua hewan mempunyai kapasitas untuk merespon terhadap cahaya. Cahaya merupakan gelombang elektromagnetik dan organ visual dari hewan memperlihatkan perbedaan sensitifitas terhadap gelombang cahaya yang berbeda. Disamping memperlihatkan sensitifitas teerhadap cahaya, kebanyakan hewan telah mempunyai organ penglihatan yang baik yaitu mata. Mata atau titik mata ditemukan pada Platyhelminthes, Nematelminthes, Annelida, Molluska, Arthropoda dan semua Vertebrata. Mata dibangun oleh sel-sel fotoreseptor yang menerima kualitas cahaya tertentu seperti intensitas dan warna.

Struktur retina
Retina merupakan lapisan yang sangat halus dan sangat sensitif terhadap cahaya. Retina menangkap bayangan dari obyek dari luar dan meneruskan kesan tersebut ke pusat penglihatan pada korteks serebral. Sebelum cahaya sampai pada lapisan reseptor (sel kerucut dan batang) terlebih dahulu harus menembus melewati kornea, aqueous humour, lensa , vitreous humour dan lapisan retina. Lapisan reseptor mempunyai suatu daerah yang disebut fovea yang hanya berisi sel-sel kerucut.
Penyebaran sel-sel kerucut dan sel batang pada retina mata tidak merata. Pada manusia mulai dari fovea ke bagian tepi dari retina jumlah sel kerucut makin berkurang sedang sel batang makin bertambah. Pada hewan malam retina terutama berisi sel-sel batang. Sebaliknya hewan yang aktif pada siang hari retinanya berisi sel kerucut. Sel-sel batang sangat penting untuk penglihatan pada waktu cahaya berkurang tapi tidak dapat melihat warna. Pigmen yang sensitif terhadap cahaya yang terdapat pada sel batang akan terurai oleh cahaya yang terdapat pada sel batang akan terurai oleh cahaya dan dibentuk kembali waktu gelap. Karena regerasinya lambat maka fotosintesis sel batang secara berangsur bertambah di tempat yang gelap.
Sel kerucut sangat penting untuk penglihatan di waktu terang dan dengan adanya sel-sel kerucut kita dapat melihat zat warna. Sel-sel kerucut memerlukan cahaya terang agar dapat berfungsi. Pada fovea atau bintik kuning hanya terdapat sel-sel kerucut dan tiap sel dihubungkan dengan satu serabut saraf. Sel kerucut juga mempunyai pigmen yang sensitive pada cahaya. Terdapat tiga macam pigmen, salah satu yang telah dapat diketahui adalah iodopsin. Terdapat tiga type sel kerucut yang peka terhadap sinar merah, hijau dan biru.
 

Blogger news

bisnis

Blogroll

bisnis